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Abstract

In spite of the amount of work recently devoted to distributed systems,
distributed applications are relatively rare. One hypothesis to explain this scarcity of
different examples is a lack of experience with algorithm design techniques-tailored
to an environment in which out-of-date and incomplete information is the rule. Since
. the design of data structures is an important aspect of traditional algorithm design,

——we-feel-that it is important to considcr the problem of distributing data structures. In S

this paper, we investigate;these issues by developing a distributed version of an

extendible hash file which is a dynamic indexing structure that could be useful in a

distributed database. .——-, -
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1. Introduction

There is currently a significant amount of work being done in the area of
distributed systems. Among the motivations usually cited for the use of a distributed
system are ease of expansion, increased reliability, actual geographic distribution, the
ability to incorporate heterogeneous resources, and resource sharing among
autonomous sites. In spite of this, distributed applications are relatively rare. By this
we mean problems that actually exploit some aspect of distribution and have been
solved by user-level distributed programs. As an example, one can easily imagine
problems requiring the computational power of a supercomputer along with an
attractive user interface using the window package of a personal workstation that
would benefit from the ability to incorporate both kinds of machines into the
solution. There are a number of hypotheses to explain the scarcity of examples
including inadequate performance in networks and lack of programming language
support. A more important problem may be a lack of experience with algorithm
designs that tolerate inaccurate and inconsistent data. It appears to be a fundamental
characteristic of distributed computations that no one component can easily gather
knowledge of the true instantaneous global state of the system. Thus, out-of-date and
incomplete information is inevitable. The purpose of our research has been to
investigate distributed programming techniques that acknowledge this principle.

Since the design of the data structures is an important aspect of traditional
algorithm design, we feel that it is valuable to consider the problem of distributing
data structures. For our purposes, a distributed system is modeled as a number of
logical processors communicating solely through port-based asynchronous message-
passing in the style of [Rashid 80]. There is no memory shared among these logical
processors. A logical processor may encompass multiple processes that execute on the
same physical processor and may share data among themselves. The phrase
"distributing a data structure” means that there are a number of logical processors
each encapsulating some portion of a single coherent data structure and acting as a
manager for that piece. The data structure may either be divided into disjoint
portions or some parts may be replicated in several managers. Replication may serve
to increase availability of the data structure when processors can fail or to improve
performance by allowing more concurrency through a bottleneck of the structure or
by placing copies of heavily used information at user’s sites. Such replication raises
the issue of maintaining consistency to an appropriate degree. Although a number of
general purpose mutual consistency algorithms are available [Gifford 79, Stonebraker
79, Thomas 79}, often it should be possible to exploit certain properties of the
specific problem at hand to arrive at a less synchronized method. In this paper, we
investigate these issues by developing a distributed version of a particular indexing
structure.

2. A Distributed Version of Extendible Hashing

> Hashing has long been recognized as a fast method for accessing records by key
in large relatively static databases. However, when the amount of data is likely to
vary significantly, traditional hashing can suffer from performance degradation and
may eventually require rehashing all the records into a larger space. Extendible
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hashing [Fagin 79] is one of a number of recently developed hashing schemes
{Larson 78, Litwin 80, Lomet 83, Litwin 78] that can grow and shrink in response to
insertion and deletion operations. A distributed system can provide the growth in
resources to accommodate such growth in the data structure. Thus it makes sense to
investigate how to partition an extendible hash file among the sites in a distributed
environment. In addition, availability considerations demand that any data structure
used as an index for a distributed database be itself distributed and possibly
replicated. Finally, it appears to be relatively easy to distribute components of an
extendible hash file in such a way that operations involve as few sites as possible.

The sequential algorithms for extendible hashing are described in [Fagin 79). The
basic ideas and terminology are summarized below. The data structure consists of
two parts: a set of buckets and the directory. The buckets reside on secondary storage
and ocontain keys and associated information. The order of the data within buckets is
not important for this discussion. The directory is an array of pointers to buckets. A
hash function is used that generates a very long pseudokey when applied to a key.
The number of bits of the pseudokey actually used to index into the directory is
called the depth of the directory and changes as the file grows or shrinks. In our
work, the least significant bits are used in order to simplify manipulations of the
directory. Suppose that the directory’s depth is currently three. This means that at
the moment, there are eight valid directory entries. The #* entry, 0 < / < 7, points to
the bucket that holds all the records whose pseudokeys end in the three bit binary
representation of i Each bucket includes a localdepth (< depth) indicating that the
pseudokeys of the records it contains agree in only that number of bits. Thus
multiple directory entries will point to the same bucket if its localdepth is less than
the directory’s depth. Figure 1 gives an example of an extendible hash file for
sequential access. To perform a find operation for a key, k, one would apply the hash
function to k to obtain the pseudokey (imagine it is °...101°), determine the current
depth of the directory (2 in this example), and use the appropriate bits (‘01°), as an
index. Following the pointer in the directory entry, one would search the third
bucket for k. As insertions occur, a bucket may become full (indicated by the count
field) and split into two buckets. If the old localdepth equals depth, the directory
doubles in size and depth increases by one. Similarly, deletions may result in two
buckets merging and possibly reducing the depth of the directory. One way of
detecting the condition that allows halving the size of the directory is to keep a count
(named depthcouni) of the number of buckets whose localdepth equals depth. Figure
2 shows how a sequence of updating operations would affect the structure given in
Figure 1 where x { y = z = maximum number of keys allowed in a bucket. This
data structure is our point of departure for developing a distributed solution. The
obvious partitioning calls for two types of logical processors, namely directory
managers that are responsible for replicas of the directory component and bucket
managers. Each bucket manager is responsible for a disjoint subset of the buckets.

The distributed solution is derived from a solution allowing concurrent access to 2.

shared centralized extendible hash file [Ellis 83). That solution is based on i

protocols and modifications in the data structure to allow for concurrency. Additional

modifications are introduced here to improve locality and allow replication of the
directory component. The fundamental change from the sequential version is that the
buckets are linked through a next field to allow recovery from concurrent
restructuring operations. This provides an alternate path to the desired data that can
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a) After inserting record with pseudokey ...11 into Fig. 1, causing split.

000 localdepth = 2
—1—¥{ count iy X
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i DEPTH = 3 01
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h 010 — count : y/2
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100 count = 2/2
“ data*
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10|~ data*
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oS m - count 3 ylz==
\ data*

b) After inserting record with pseudokey ...10, causing split and doubling of
directory.
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be used by a searching operation when the information is being moved in a split or

merge o&eration. The approach is similar to the use of link pointers in Lehman and
Yao's Blink-tree solution [Lehman 81). When a bucket splits, the next link of the
original bucket is reassigned to point to the newly created bucket. The new bucket
gets the original bucket's old next pointer. Merging does the reverse. The next
pointer is also used for recovery through deleted, but not yet deallocated, buckets.
Deleted buckets and discarded halves of the directory are actually deallocated only
after ensuring that they are no longer needed. In addition, there must be a way for a
bucket manager performing the search phase of a transaction to tell if it has read the
wrong bucket. We chose to include a field (commonbits) containing the common bit
pattern that characterizes the pseudokeys that belong in the bucket. Alternatively,
one could reapply the hash function to any key stored in the bucket and use this for
comparison with the target pseudokey as long as the possibility of an empty bucket is
taken care of. "Wrong bucket” includes the case where the bucket has been merged
into a preceding bucket. That bucket is marked as "deleted” (using commonbits
field). A prev link has been added to each bucket that leads to the bucket from which
this bucket originally split off. This information which is local to the bucket manager
is used to simplify finding the partner bucket for a possible merge. Each link now
represents a pair consisting of a long-lived identifier for a manager port and a bucket
address that is meaningful to that manager. A version field introduced into each
bucket and each directory entry is used in updating directory copies asynchronously.
The resulting data structure appears in Figure 3. Two copies of the directory are
shown in that figure. Note that this example represents a consistent state with no
update operations in progress.

The main purpose behind the modifications is to make it possible to tolerate
inconsistencies and inaccuracies in the directory data. In order to gain some intuition
for these structural changes, consider the configuration shown in Figure 4. There are
two active update operations: an insertion of a record with pseudokey °.... 00’ that has
just caused a split and the deletion of the only record left with pseudokey of the
form “.... 11° causing a merge. The top copy of the directory has not yet recorded the
effect of the split and the bottom copy does not yet reflect the merge. Suppose there
is a find operation for pseudokey °.... 10’ directed at the topmost directory. The first
bucket retrieved is the wrongbucket as indicated by the comparison of the pseudokey
and commonbits and the search continues with the next bucket which turns out 0 be
the desired one. Similarly, consider a search for pseudokey °.... 11’ directed at the
bottom copy of the directory. The first bucket read is marked as deleted and the next
link leads to the appropriate bucket.

The actions taken by the managers in response to messages received are discussed
below. Figure 5 shows the message types that flow between the various managers.
The information contained in these messages is outlined in Figure 6. A condensed
version of the procedure for the directory manager, written in a C-like syntax
[Kernigan 78), is given in Figure 7. The directory manager is presented here as a
server capable of handling multiple user requests. The bucket manager is written as a
front end process that serves as the initial contact for its set of buckets and a set of
associated processes that reside at the same site and share secondary memory. The
pseudo-code for these processes is given in Figure 8.
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Figure 5 Managers and Message Flow
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: message id data in message message id data in message
Request desired key Wrongbucket  op: (find | insert | delete)
_ op: (find | insert | delete) desired key
A user’s port transaction #
page address
User Response  success: (true | false) user’s port
. . directory manager’s reply port
Find, Insert, desired .key pseudokey agerstep
Delete transaction # bucket manager’s reply port
page address
user’s port Ack for Wrongbucket
directory manager's reply port
pseudokey Splitbucket manager’s reply port
user’s reply port buffer contents of new half
Bucketdone transaction # Splitreply new page address
success: (true | false) id of bucket manager
Update transaction # Mergedown partner’s address
old localdepth localdepth
version # of "0" partner bucket manager’s reply port
version # of "1" partner
new page address M.D. Reply buffer contents
id of bucket manager success: (true | false)
success: (true { false)
Mergeup partner’s address
Copy update  op: (insert | delete) bucket manager's reply port
pseudokey target bucket’s address
old localdepth bucket manager’s id
version # of "0" partner
version # of "1" partner M.U.Reply  localdepth
new page address version #
id of bucket manager bucket manager’s reply port
acknowledgement port success: (true | false)
Ack for Copy update Go ahead next link
next bucket manager id
Garbage Collect list of page addresses version #

success: (true | false)

Figure 6 Messages

..............................................................
..............................




Figure 7 Pseudocode for Directory Managers

Notatioa

C-like statements;
English-like pseudocode statements;
/°comments*/

while (true ) {

= GetMessage (8meg).
/* Either receives a message or takes 2 message off
the list of delayed but now ready directory updates. */
switch (measageid) {
case request: /° from user */
readcount = readcount + 1;
/°number of transactions in progress®/
Caiculate pseudokey and locate current
incarnation of the bucket manager responsible
for desired bucket;
Generate transaction # and save state related
to this request:
Construct and send 8 “tind”. “insert™ or
“delete” message:
break;

case bucketdone: /* from bucket manager -
po directory update needed */
RestoreState (msg.transaction #);
7* Recall context for this request */
# ('meg.success 88 operation = = delete) {
Try again: locate bucket manager again
and reissue “find”, “insert” or “delete”

) message;
olos {
readcount = readcount - 1;
CleanState (meg transaction #);
/° forget about this request */
)
break;
case update: /° directory update at directory manager
that initially handled request */
RestoreState (msg transaction #);

Send a copyupdate message (o aff other directory

managers and increment copycount for each

outstanding directory update

# (VersionsDoNotMatch(msg))

/° compares version numbers in message with

version aumbers in corresponding directory entries */
DelayUpdate{meg).

aee {

if ( operation = = insert) {
Apply appropriate updates
to local copy of directory;
# (imeg.success) {
Try again;

olse {
readcount = readcount - 1;
) CleanState (msg.transaction #);

}

olse { /7° op = delete */
Record iocation of deleted bucket for the
eventual garbage collection phase;
Apply local directory updates;

}

ReleaseSaved():

/°1f finishing this directory update enables previously
) delayed ones. make them accessible 10 GetMessage */
break;

case copyupdate: /* from other directory managers */
it (VersionsDoNotMatch(msg))
DelayUpdate(msg):
oise {
it (mag.op = = ingert) {
Apply local directory updates;
SendAck(msg.ackport). /° respond 10
directory manager who initiated this update */

)

olse { /7° op = delete */
Apply local directory updatss:
RememberAck(msg.ackport);
/* save up acks until the equivalent of
exclusive-locking occurs */

}
) ReleaseSaved().
bresk;

Case ack : copycount = copycount - 1;
break;

}

# (readcount) SendRememberedAcks():

/°send acks saved by deletion copyupdates */

# (readcount 44 icopycount) GarbageCollect();

/°get rid of buckets deleted through this directory manager */
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Figure 8 Pseudocode for Bucket Managers
Bucket Manager Front End Process:
while (trve) {
messageid = receivemessage
if (measageid = = gplitbucket) { 7° from another bucket

manager with no available space ¢/
Aliocate available pege;

(&msg

(newpage, meg.half2);

putbucket o
Send "SpiitReply” message containing link to new bucket;

}

olso {
Create 8 bucket siave process and forward msg to it;

Bucket Stave Process:

receivemessage (Smsg);

messageid =

if (messageid = = wrongbucket) sw = msg.op;
duw-mld

switch (aw) {

case find: oldpage = msg.page.;
Readlock (oldpage);
# (messageid = = wrongbucket)

Send "Ack* to bucket manager holding
previous bucket; /*allows it to unlock */

elee Send successful “Bucketdone” message;

/°tells directory manager that no update is needed °/

getbucket (oidpage. current);

onmachine = true;

/*Follow next links until current is the right bucket:*/
while (current is wrong bucket 88 onmachine) {

(‘..x.z. '..r t FOrS

newpage = current -> next;

machine = current -> nextmgr.

# (machine 1 = me) { /* next bucket is remote */
Send "Wrongbucket” message to next bucket
manager;
onmachine = faise;

}

olse { /° next bucket is local */
ReadlLock (newpage);
getbucket (newpage, current),
UnReadLock (oldpage);

} oidpage = newpage.

z(m) {

¥ (ssarch (current, meg.key))/* is key there? */
found (meg.key);

olee
notfound (meg.key);

)dn receivemessage (8meg). /° Wrongbucket reply */
UnReadLock (okipage);
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case ingert: onmaching = true:

oldpage = meg.page.
Selectivel.ock (oldpage);
# (messageid = = wrongbucket)
Send "Ack” 10 previous bucket manager;
(oldpage, current);
Follow next links until current is the right bucket
(as in find case except use Selective iocks instead of
Read locks);
# (lonmachine) {
receivemessage (dmsg); /* Wrongbucket reply */
) UnSelectivelLock (okipage).
eise {
if (search (current, msg.key)) {/°is key already there?*/
success = rue;
Send "Bucketdone” message:;
UnSelectivel.ock (oldpage).

)

else if (current -> count ! = numentries) {
/° current bucket not full */
success = wue;
Send "Buchkstdone” message;
add (current, meg.key);
/*inserts key into current buffer */
putbucket (oidpage. current);
UnSelectivel.ock (oidpage);

}
olse {/°current is full - directory will be affected */
success = spiit (Current, hatf1, ha!t2, meg.key);
/*distributes the contents of the current bucket into
2 buffers pointed to by halfl and half2;
if room available, inserts key into appropriate half
and retums true; otherwise returns false */
if (AvailablePages()) {
newpage = allocbucket (),
machine = myid;
putbuckat (newpage, half2);

olae {/° oo available pages locally */
Send ~Splitbucket” message
containing contents of new bucket
10 @ manager with spece:
receivemessage (§msg): /*split bucket reply®/
maching = meg.bucketmgr.
NOwWpage = mMeg.-page.

}

halft -> next = newpage.

half1 -) nextmgr « machine.

putbucket (oldpage. haif1),

UnSelectivel.ock (oldpage).

Send "Update™ message to originating
directory manager telling it to update directory;
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Figure 8 (continued)

case delete:
Find the right bucket as in the beginning of insert
except place Exclusive locks;
it (fonmachine) {
receivemessage (8msg): /° Wrongbucket ack */
; UnExclusivel.ock (oldpage);
olse {
# (current bucket will not be left "too empty*”
as 8 result of deleting msg.key) {
Send successiul “Bucketdone” message;
if (remove (mag key, current))
putbucket (oidpage, current),
UnExclusivelock (oldpage);

)
olse { 7°Merging parner buckets is called for*/
i (msg.key is in first bucket of the pair) {
newpage = current -> next;
machine = current -> nextmgr.
if (machine = me) {
Merge on site;

else (/° panner is remote */
Send "Mergedown” message 10
partner's bucket manager;
receivemessage (8mag);
/¢ Mergedown Reply expected */
# (msg.success) {/°OK 10 merge
(i.e. localdepths match):
contents of partner in msg */
Construct merged bucket
in current buffer;
putbucket (oldpage. current)
Send successful "Update” message;

}
olse {/° simply remove record */
Send successful
“Bucketdone” message:
if (remove (2. current))
putbucket (oldpage. current);

}
UnExclusiveLock (oldpage):
}

}
eise { /7° msg.key in second of pair */
newpage = current -} prev;
maching = current -) prevmngr:
UnExclusivel.ock (oldpage):
it (machine = = me) {
Merge on site;

)
olge {/° partner is remote */
Send “Mergeup” message 10
partner's bucket manager;
receivemessage (meg);
/° MergeUp Reply expected */
¥ (Imag.success) {
/° not mergable - simply remove record */
Send successiul
“Buchketdone” message;
% (remove (z, current))
putbucket (cidpage. current);

)

olse {/* apparendy mergable from

partner's point of view- check more locally */
Exclusivel.ock (oidpage).
getbucket (oldpege, current);

T rmna—y—

il (key to be deleted no longer

belongs in current bucket) {
UnExciusivel.ock (oldpage):
Send “Goshead” message (0 partner
with success lieid se! (0 faise;
/°cancels merge */
Send "Buchetdone " message
with success = faise; ’
/*wll directory manager to retry °*/

}
oles if (current-diocaidepth
does not melch locaidepth in msg ||
current no longer “too empty”) {
Send successful “Bucketdone”

Seng successiul “Goahead”

message 10 partner;

/°tel] partner’s manager (o merge ¢/

current -> next = current -> prev.
- =

current -> nsx!mg: .

current -> commonbits = deleted;

putbucket (oldpage, current);

Send successful "Update”

message;

}) Y )r)r)r)d)
break;

Send "MergeDown Reply” (0 partner;

i (success) {
brother > commonbits = deleted;
brather -> next = brother -> prev,
brother -> nextmgr = brother -> prevmgr.
putbucket (newpage, brother); .

}
UnExclusiveLock (newpage):
break;

gehucket (newpage, brother),
success = (brother -) next = = meg.target) 48

¥ auccens) {
receivemessage (8meg): /° "GoAhead™ expected */
¥ (mag.success) { /° merge */
Construct merged bucket in brother;
putbucket ( newpage. brother):

dealiocate (page):
UnExclusivel.ock (page).

)
break;
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search for the target bucket to prevent interference between searches and deletions.

LY
In the centralized solution, the directory component was locked during the é
A deleting process placed an incompatible lock. If the deleter did not exclude the ;ﬁ

reader and was in the process of halving the directory, the reader might have B
attempted to access an invalid directory entry based on the old value of depth. A S
similar interference could occur between readers and deleters with regard to recently RO
deallocated buckets. The locking of the directory in the centralized solution translates e
into the manager’s explicit scheduling of requests for its attention in the distributed pe
version.

given by the following table.

A user wishing to perform an operation on the distributed hash file may contact E;k

g any directory manager with a request message. Upon receiving the request, the N
{ manager saves some state about the desired operation, does the directory lookup, and L
forwards the request to the bucket manager indicated. After forwarding the request, oy

* the directory manager can service another message. While a request is outstanding, i“‘
the manager delays deallocation of deleted components that the request may be 0ot

depending upon. o

; The forwarded request is eventually received by the bucket manager front end. A s
new slave process is created for each request requiring service from the bucket ey

manager (with the exception of an off-site split which is handled by the remote front- R

end). The slave processes associated with a bucket manager can manipulate the data g
in buckets belonging to this manager after locking the bucket and transferring the ::Z-:T‘
information into private buffers. The buckets are assumed to occupy physical pages bl

on disk which are read and written as single operations. The locking protocol uses L;

various types of locks placed on individual buckets. The compatibility of lock types is E_

Lock request Existing lock
read-lock selective-lock exclusive-lock

, e, ] ".- g .l.'-l" .

read-lock yes yes no DY
\“: .*
selective-lock yes no no N
T
exclusive-lock no no no My
-

If the request message calls for a find operation, a read-lock is placed on the
target bucket. For an insert operation, the slave process places an selective-lock and
for a delete, an exclusive-lock.

Upon reading the data, the process may discover that it has the wrong bucket. S
This means that a split or merge has occurred that was not yet reflected in the copy E-
of the directory that was read. In other words, now the localdepth low order bits of R
the target pseudokey do not match the commonbits of this bucket. By following the o
next pointer, the right bucket will eventually be found. The next bucket is always o

locked prior to releasing the lock on the current bucket. This flow of locks, known as R
lock-coupling, prevents processes from leapfrogging each other. If the next bucket |

belongs to a different bucket manager, a wrongbucket message is sent and
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acknowledged before the lock is released. Once the right bucket is found, the desired
operation is performed and finally a response sent to the directory manager that
initially handled the request. Lock incompatibilities prevent interference among
updates. An insert or delete operation may result in a splitting or merging of buckets.
Off-site splitting may be necessary if there is a shortage of available buckets locally.
Off-site merging occurs when the partner bucket belongs to a different manager.
Protocols are available to handle these situations (splitbucket, mergedown, and
mergeup messages and associated replies). If a merge operation appears to be
appropriate, the partner bucket can be determined using local information (i.e. either
next or prev links). In the centralized algorithms it was acceptable to locate a partner
bucket using the directory. In the distributed case, this would have involved
additional message traffic for a bucket manager to send an inquiry message to a
directory manager and wait for a reply. In order to avoid deadlock, the partners for a
merge must be locked according to the ordering imposed by next links. If it is
necessary to lock the bucket pointed to by prev, the lock on the target bucket must
first be released and a number of conditions must be checked after gaining the locks.
This results in the differences between the mergeup and the mergedown protocols.

Two possible responses may come back to the directory manager from a bucket
manager, either bucketdone or update. Bucketdone will generally signify that no
directory modifications are needed and the directory manager may now forget about
this request. An update message calls for scheduling an update on the local copy
according to version number and notifying all other directory managers by
broadcasting a copyupdate message. For each outstanding unacknowledged remote
directory modification, a counter is incremented that serves to prevent garbage
collection. A bucket may not be deallocated until all directories send an acknowledge
message. Upon receiving a copyupdate message, a directory manager schedules the
update on its local copy and when the changes have been applied (and in the case of
delete operations, when no outstanding requests remain at this manager),
acknowledgements are sent.

Because obsolete directory information is usable, the muluple copy update does
not have to be strictly synchronized (in the sense of an atomic transaction). However,
the ordering of different directory modifications due to operations on the same
bucket should be the same across all copies and determined by the order in which
the bucket operations are performed. Each split or merge changes the version
numbers of the affected buckets. A split generates two buckets with version numbers
one greater than that of the original bucket. A merge results in one bucket with a
version number one larger than the maximum version of the two partners. The
version number in each directory entry should match the version of the bucket it
points to when the directory is competely up to date. Each directory manager applies
the modifications indicated by an update or copyupdate message to its local copy
when the version numbers of the affected directory entries match the version
numbers in the message which reflect the versions of the buckets involved. This use
of version numbers for scheduling updates enforces the desired ordering. The
following example illustrates why this ordering approach is adopted. Suppose first a
split operation is performed almost immediately followed by a merge involving those
two buckets. Imagine a directory manager that hears about these updates in the
opposite order and applies them. The directory update related to the merge would
essentially have no effect since the split had not yet been processed. The subsequent
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update related to the split would result in directory entries leading to a deleted
bucket. At this point the directory is usable since next links provide recovery.
However, since it appears that both messages have been serviced, the deleted bucket
could then be deallocated. This would leave that copy of the directory in a truly
incorrect state from which recovery would be impossible.

YY)

-‘lJl.ﬁ

Under the assumptions that processes do not fail, message buffering is sufficient
b, to eliminate blocking on a send, and messages are reliably delivered, then this
solution can be shown to be deadlock free and correct in the sense that requests are
serializable in their externally observable behavior. Although extremely unlikely, the
theoretical possibility of indefinite postponement does exist.

In discussing the correctness of this algorithm, we wish to separate the arguments
concerning the replication of the directory from those about the basic protocols and
processing that service.the user's request. This allows us to view the replicated
directories as a single global directory with certain desirable properties in later phases
of the discussion. Intuitively, we need a statement to the effect that the information
gathered from a directory access may not accurately reflect the current state of the
hash file; but it is incorrect in such a way that next links provide adequate recovery.
We now attempt to formalize this idea somewhat and then show that our multiple
copy update strategy actually maintains this property. Throughout this presentation,
the term transaction is used for the execution of a single find, insert, or delete
operation as it moves thorugh various managers.

The version of the directory seen by a transaction can be expressed as one
member of a set of schedules, S, that defines the state of the directory. For this to
make sense, we must elaborate on the notion of a schedule. Consider the set, A4, of all
split, merge and remove (enabling garbage collection) actions resulting from update
operations that have changed the bucket structure by the time of the directory access
in question. For example, a delete request may require no directory modifications at
all or it may generate a merge and subsequent remove that become members of A.

There is a partial ordering imposed in these actions based on when bucket
- modifications are made. Specifically, if two operations affect the same bucket, then
: there is a relationship established between them. A schedule is a totally ordered
subset of A that obeys the following constraint: The order of actions within the
schedule must be consistent with the partial order. No individual schedule in the set
S necessarily represents the timing of bucket modifications; but rather, it can be
viewed as encoding a valid directory structure at some point during a possible
execution sequence of the actions in A. An action is considered done and its effects
incorporated into the directory when it appears in each schedule of S. All other
- actions are still in progress. In the case of a delete request that causes two buckets to
1 be merged, the deleted bucket is not deallocated until the associated remove action is

= done so recovery through its next link is still possible. The point is that the A
- appropriate next links are set up before the related split or merge action appears in T
~ any schedule of S and deleted buckets remain in place until all schedules include the SO
- relevant remove action. Consequently, any member of S represents usable R
2 information. =)
% In the implementation of the replicated directories, each copy corresponds to 30
- one schedule in the set. The sequence of actions in a schedule indicate the order of ‘_‘;

.......................
.................
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directory updates applied to that copy. A split action signifies the local execution of
the updatedirectory procedure and possibly doubledirectory. A merge action
represents the execution of halvedirectory or updatedirectory. Remove denotes the
equivalent of placing an exclusive-lock on the local copy (i.e. testing the readcount).
Inclusion in the set 4 can be defined by the set of update messages that have been
sent from bucket managers to directory managers. A sequence of these actions is an
appropriate model for the state of a single copy since the corresponding code sections
are performed serially by the manager. There are various ways of enforcing this
requirement. In the multiplexed directory manager given, access to its copy of the
directory by concurrent transactions is controlled by explicit scheduling. the receipt
of a message establishes a context for the resulting processing and the directory
structure is put into a consistent state before the context changes again. Either the
required values are contained within the incoming message to initialize the context
(e.g. copyupdate or request messages) or saved values that were previously tagged
with a transaction number are restored when further steps must be taken on behalf
of the transaction (e.g. due to arrival of an update message). The directory updates
are scheduled locally in response to receipt of an update or copyupdate message. Our
requirements state that this scheduling must be consistent with the partial ordering
on actions. This is accomplished using the version numbers. Each split or merge
changes the version numbers of the affected buckets. A split generates two buckets
with version numbers one greater than that of the original bucket. A merge results in
one bucket with a version number one larger than the maximum version of the two
partners. The partial ordering is determined from the buckets and resulting version
number associated with each action. For example, consider the following set of
actions applied to the hash file in Figure 3 where the format for an individual action
is <type of action and transaction number, first bucket involved, second bucket,
resulting version number>:

{<split 1, bucket a, bucket d (new), version 2>
<split 2, bucket c, bucket e (new), version 3>
<split 3, bucket e, bucket f (new), version 4>
<merge 4, bucket d, bucket a, version 3>
<{merge S5, bucket b, bucket a, version 4>}.

Then, using < for the precedence relation,
split 1 < merge 4 < merge S and split 2 < split 3.

Each directory manager schedules updates on its copy based on its record of
which actions have already been incorporated into the structure. This information is
encoded as version numbers in each entry of the table to be matched against the
version number of updates (data supplied in the update or copyupdate message).
Specifically, the Boolean function, VersionsDoNotMatch, must calculate the indices
of the affected directory entries (using the pseudokey, whether the operation was an
insertion or a deletion, and the local depth of the buckets prior to modification) and
then compare version numbers of the entries and the message.

The requirement that deleted buckets remain available until all schedules
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contain the associated remove action is enforced by a conservative approach. The
directory manager initially contacted for a request to delete that causes two buckets
to merge is responsible for determining when the space can be reclaimed. It must
collect acknowledgements related to the merge from all other directory managers and
wait until transactions using old information from its own copy have finished before
the partner’s page can be deallocated. In fact, the directory manager waits for all
outstanding acknowledgements and a quiescent local state before triggering garbage
collection. Other directory managers wait until there are no transactions using their
copies before sending acknowledgements for deletions.

The next step is to assume a well-behaved global directory and show that
concurrent transactions do not interfere with each other or destroy the data structure.

First, we need to demonstrate that the search phase of a transaction arrives at
the right bucket. The user's request for an operation may be directed to any available
directory manager. In servicing this request, the manager generates a transaction
number, decides which bucket manager to contact, and saves some state about the
transaction. The information used to determine the appropriate bucket manager may
be out of date because of insert or delete operations that are still in progress (i.e. the
associated update or copy update message has not yet been processed).

Imagine a searching transaction that indexes into the directory and finds a
pointer to bucket A as that directory entry is about to be changed to reflect a split or
merge. If A has recently been split, A’s next link will lead to the new bucket which
contains the records moved from A. If 4 has just been merged into its partner, it will
be marked as deleted, making it the "wrong bucket” for any search and the next link
again will provide recovery. The important observation is that obsolete directory
entries that are still visible always point to a bucket from which the correct bucket is
reachable via next links. The changes in the bucket structure appear as atomic actions
to concurrent transactions. In our formulation of the bucket manager, a slave process
is spawned for each transaction within each manager involved in the transaction.
Thus there is the need for locking to control concurrent access to a manager’s
buckets. Adding or removing a key without causing restructuring is done in a single
disk put operation. If the target bucket for an insertion is full, it will be replaced by a
pair of buckets in which the old contents are distributed between the two according
to pseudokey. The new record will be included in the appropriate partner if there is
room. The second half of the pair is written first in a newly allocated disk page and
then the old bucket is replaced by the first half of the pair. Inmediately after the
first put, the new bucket is still not reachable through pointers in the hash file. Thus
writing the pair is equivalent to the single operation of writing the first partner. Two
buckets that are being merged are protected with exclusive-locks so intermediate
states are not visible. Upon arriving at the right bucket, a process performing an
insert or delete must also see the right version of it. Again a lock which excludes
other updaters is required in order to read the bucket contents into private storage
and is held until the bucket is rewritten (or it is discovered that no change is needed).
Thus previous updaters have made their modifications known by the time a new
updater gains its lock. Processes executing the find operation may legitimately see
either an old or the new version of the target bucket.

Next, we consider potential inference among update transactions. Once an
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update arrives at the right bucket and gains the locks it requires, the actual
modifications are essentially serialized. Thus updaters work with the most recent
version of that bucket. However, for a deleter to get to the point where it has all the
locks its needs can be somewhat involved if the target bucket is the "1 partner of a
potential merge. The deleter must release its lock on the target bucket, place a lock
on the "0" partner, and then re-lock the "1" partner. While this is taking place, other
update operations may be affecting these buckets. In particular, a concurrent
insertion could add new records to the target bucket once the deleter’s lock is
released so that it is not longer empty enough to allow merging. It is even
theoretically possible for a stream of inserters to fill up the target bucket and cause a
split, thereby moving the key that is to be deleted. In addition, another deleter might
- get the two partners locked and merged before the deleter we are focusing on does.
N Each of these conditions is checked for and the pitfalls avoided. After gaining the
. lock on the "0" partner, the deleter checks whether merging might be possible (the
partner’s next link points to the target bucket), and if this check fails, it goes back to
simply trying to remove its key. If the two buckets are not linked in this way, it may
mean the localdepths do not match or that the target bucket has been deleted.
Attempting to lock the target bucket under these circumstances would carry with it
N the danger of deadlock. Upon finding the two buckets directly linked and re-locking
the "1" partner, the deleter checks the emptiness of the bucket, whether the desired
key is still there, and whether localdepths still match before going ahead with the
merge. Unless the key has moved, the deleter at this point would have the needed
locks and no further interference could occur at the bucket level.

O e -
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Bucket manipulations that are completely contained within one bucket manager
work almost exactly like the centralized solution [Ellis 83). Processing may go outside
the boundaries of one bucket manager if the search phase has arrived at the wrong
bucket manager, a split is required and no space is available locally, or a merge
appears necessary and the partner is remote. In each of these situations, a second
bucket manager becomes involved. In this presentation of the algorithm, an off-site
split is handled directly by the front end process since it does not affect existing
buckets in the second manager’s partition. For the other cases, another slave is
created for the transaction by the second manager. A wrongbucket message transfers
the necessary state for continuation of processing at the new site. Calls to SendAck
and SendBucketdone generate messages that trigger the releasing of read-locks. If a
split is called for, two or three processes (i.e. the originating directory manager, the
bucket manager slave currently responsible for the full bucket, and possibly a bucket
: manager front end with available space) become involved; however, there is no real
- pa%a.}leinsm among them so the order in which the disk operations take place is well-
" define

The merge is slightly more complex. There are two cases to consider based on
which of the partners the original bucket manager has. The Mergedown message and
its associated reply are used when the first manager has the "0" partner of the
potential merge to share state values needed by the other manager (e.g. the

- localdepths of the two buckets must be compared and new links must be set up in
N both buckets). The Mergeup protocol (i.e. Mergeup, MergeUpReply, and GoAhead
messages) serves to exchange the information needed for the extra checking on
- mergability described above. Parallelism is allowed between the two bucket
- managers; however, because of the exclusive-locks protecting the two partners, the
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ordering of disk operations does not matter.

The freedom from deadlock argument depends on the fact that locks are
requested according to an ordering on the buckets. While a bucket is locked,
additional locks are requested only on buckets reachable from it via next links. Given
the way deleted buckets are handled, it is not true that the ordering between two
buckets stays the same for as long as both exist. Thus, initially bucket B may be
reachable from bucket 4 but if they are partners this relationship may be reversed as
B is merged into A. However, it is not possible for transactions following the old
ordering to coexist with ones following the new ordering because during deletion
exclusive-locks are used to ensure that all the slave processes with old information

T W MRS LA S _mJEE . 2 ¥ -

v have cleared out of the vicinity of the merge. Extra precautions must be taken by the
i’ slave: involved in a deletion to check that the locking of partners is consistent with
reachability.

This distributed implementation not only has locking as a potential source of
deadlock but also involves message flows and internal scheduling of requests within
managers. It is necessary to demonstrate that these factors do not introduce deadlock.
A transaction could be blocked if it requires service from a process that is blocked on
a receive message primitive or it is stuck in one of a directory manager’s scheduling
tables.

a A sl 8, W 4, 8

First, consider the message flows. Ignoring name lookup for ports, there is a
single receive point in the directory manager code (in the procedure GetMessage at
the top of the outer loop) and it accepts any incoming message regardless of message
type or identity of sender. Basically the same statement holds for the bucket manager
front end processes. Each instance of a bucket slave is dedicated to one transaction.
This fact simplifies the analysis of protocols between bucket managers. For each
receive point in the bucket slave code, we can characterize the state of both the
sender and receiver. For example, the receivemessage in the find case is executed
only when onmachine = false and SendWrongbucket has been done. This imples
that messageid = Wrongbucket in the other slave process and SendAck is eventually
executed. It is easy to see that the message flows through bucket managers do not
cause deadlock by doing this kind of analysis for each receive point.

AR A R AR AL ST SRR PRROTEES |

- There are four ways in which a transaction can get delayed within directory
§ managers: it may be in the context table awaiting a bucketdone or update message
from a bucket manager, its directory updates may be delayed until versions match,
copyupdate acknowledgements for deletions may be waiting for the equivalent of
local exclusive—locking (i.e. a readcount of zero), and the initiation of garbage
collection may be waiting for the analogue of global exclusive—locking (i.e. local
exclusive - locking plus receipt of outstanding copyupdate acknowledgements). The
first case presents no problem as long as a bucketdone or update message is sent
back to the originating directory manager for each find, insert, or delete message.
This is true as can be seen by following each branch of the bucket slave code for
handling the find, insert, and delete message types. The second case requires a
guarantee that versions eventually do match. The update message contains the old
version numbers and the oldlocaldepth of the two buckets involved. The
oldlocaldepth and the pseudokey are used to determine which directory entries must
have the matching version numbers. The basis of the argument that the desired
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pattern of version numbers eventually occurs is the partial ordering on transactions
previously described and the way this partial ordering is implemented using the
version numbers. The ordering on transactions affecting shared buckets precludes
two transactions each waiting for the other to advance a version number in the
directory. The third and fourth sources of delay are related. The key observation is
that readcount represents the number of transactions initially handled /ocally that
have not yet applied their modifications to the /ocal copy of the directory.
Copyupdates are not reflected in the value of readcount. It is possible for readcount
to reach zero if new requests do not continually arrive since delayed updates are not
permanently blocked. Copycount becoming zero at some directory manager depends
on each directory manager independently reaching the point where it is finished with
all but the garbage collection work of the transactions it is responsible for. Thus,
sending remembered acknowledgements and garbage collection can be indefinitely
postponed by a steady stream of new requests but deadlock among a fixed set of
transactions is not possible.

3. Incorporating Fault Tolerance

The solution just described does not address the issues of crash tolerance and
recovery. The structure of that solution reveals that it is a fairly straightforward
adaptation of the earlier concurrent algorithm. Consideration of crash recovery
suggests a slightly different organization.

The problems associated with processor and communication failures could be
conveniently avoided if it were possible to embed updates to the hash file in a system
based on atomic transactions. However, the goals guiding the design of our solution
(e.g. concurrency and availability) have led to locking protocols that are not
compatible with standard commit protocols. As we shall see, the atomic transaction
construct is a useful tool when applied to small groups of steps within the processing
of an individual update operation.

The kinds of failures being addressed include the failure of a manager with loss
of all associated volatile process state but not of its portion of the hash file residing
on disk. Lost messages and network partitions are also considered. We assume that it
is possible to detect the death of a process. The IPC mechanism used here as the
model of communication provides notification to potential senders when a port
disappears b(lfor example as a consequence of the receiver’s death) so this assumption
is reasonable.

The most significant problems with the current distributed solution have to do
with interactions among the directory servers. In particular, directory updates are
funneled through the one directory server initially contacted for the operation and it
forwards copyupdate messages to all the other directory managers. A directory
manager can not allow the garbage collection of the set of deleted buckets for which
it is responsible until it has collected acknowledgements from all other directory
managers. Furthermore, if a server goes down before propagating the directory
update information, the scheduling of other updates at other managers is affected.

In order to prevent a failed directory manager from holding up completion of an
operation, we need the ability to remove unavailable servers from participation in the
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normal directory update routine and re-enlist them later. Thus, an individual bucket
may be deallocated when all directory servers either acknowledge the associated
update message or are designated as being down. This approach requires additional
information in acknowledgement messages (i.e. identification of transaction and
sender) and more state kept by the server responsible for outstanding (not yet fully
acknowledged) directory updates. A directory manager that is rejoining the system
must construct a sufficiently up-to-date copy of the directory before resuming normal
processing. The key observation is that the buckets contain the necessary information
for building such a copy (i.e. localdepth, commonbits, and the next link). The
starting point for a scan of buckets, namely the first bucket, is in a fixed location and
never moves during restructuring; so any old version of the directory can be used to
find it. The manager follows next links through all the buckets using a lock-coupling
protocol with selective-locks. This approach leaves the recovering manager
vulnerable to failures of bucket managers. If this possibility is determined to be
unacceptable, the manager can start with a reasonably good copy of the directory
(acquired from a healthy directory server) and use the bucket scan to verify and
update its entries. In this case, upon encountering an unavailable bucket manager,
the server can take a fairly low-risk chance of missing some information and skip
over those buckets.

The second major aspect of this more fault tolerant solution is a reassignment of
responsibilities. Rather than having the propagation of directory updates handled by
one of the directory managers, the bucket manager in charge of the bucket update
broadcasts the directory update messages and collects the acknowledgements. Since
the directory manager initially contacted does not assume responsibility for an
operation once the appropriate bucket manager has the target bucket locked, the
bucket manager can immediately send a bucketdone message to allow the directory
manager to forget any state it had saved about the transaction and later send it an
update message if necessary. The bucket managers must maintain a list of directory
managers believed to be up. The bucket scan performed by a recovering directory
manager serves to announce its existence to the bucket managers. In addition, bucket
managers can periodically exchange their up-lists. Recovering bucket managers must
acquire a current up-list and send information to directory managers for verification
of their entries for its buckets. The removal of a network partitioning is detected
duriﬂg the exchange of up-lists and dealt with by the bucket manager recovery
mechanism.

The advantage of this reorganization is that the failure of a bucket manager
prevents subsequent updates concerning those buckets from occurring so the fact
that the directory updates may not get sent is not as much of a problem as it is when
one of the directory managers is supposed to send those update messages and it is
down. In that case, there is more potential for subsequent bucket operations whose
associated directory updates will be held up by the missing messages.

The remaining details needed for fault tolerance are applications of standard
techniques such as timeout and retransmission of messages. The act of writing the
two buckets involved in a merge operation back to disk should be done atomically
using a commit protocol. The order of writing the two buckets involved in a split
operation makes them visible in one atomic step but failures during this action may
result in the allocation of a new bucket that never gets incorporated into the data
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structure. It may be convenient to enclose the disk operations involved with splitting '}:;:E_
within an atomic action as well. Qe
Figure 9 shows the revised message flow for the increased degree of fault .
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tolerance provided. Figures 10 and 11 give the pseudocode for the managers
implementing this solution.
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Figure 9 Fault Tolerant Messages




Figure 10 Pseudocode for Fault Tolerant Directory Managers

while (true ) {

= GetMessage (dmsg):

messageid

/° Either receives a message or takes a message off

the list of delayed but now ready directory updates.
Messageid = “timeout” if list is empty and receive primitive
umes out. */

switch (messageid) {

case request: /° from user */
Caiculate pseudokey and locate current
incarnation ot the bucket manager responsible
for desired bucket;
/*Maps bucket manager id 0 port either through
a local cache or the [PC name server®/
# (valid port found) {
readcount = readcount + 1;
/*number of transactions
currently using directory data®/
Generate transaction # and save state related
o this request;
Set timer for transaction & ;
Construct and send & "find~, “insen" or
) “delete” message 0 bucket manager;
eolse send user a failure reply;
break,

case bucketdone: /* from bucket manager */
it (transaction # not in use)
/°This is a duplicate message or state lost in crash®/
break;
readcount = readcount - 1;
CleanState (msg.transaction # );
/* forget about this request */
break;

case update: /* from bucket manager */
it (VersionsDoNotMatch(mag))
/° compares version numbers in messags with
version numbers in corresponding directory entries:
detects duplicate update messages that have already
been done and reissues acks in appropriate way */
DelayUpdate(mag):
/°Eliminates duplicates of messages in queue*®/
olse {
# (mag.op = = ingert) {
Apply appropriate updates
to local copy of directory;

SendAck(msg.ackport, transaction # , myport);

do{
Contact IPC name server to iocate a heaithy
directory manager and
send & "request copy” message 1o it
Receive response containing copy of directory:
} while (timeout or emergency message received).
NoGoodMessage = true;
while (NoGoodMessage) {
lookup port to first bucket manager.
it (no valid port found) delay().
olse {
send “recover” message.
while (true) {
Receive message:
# (timeout) break;
it (it is @ bucketdata message) {
ge = faise;
break,
)
it (emergency message about
this port) {
delay():
break;
}
/*ignore irrelevant emergency
} message or duplicate directory copy*/
}

)
/*falls through to next case*/

case bucketdata: /°*from bucket managers
in response L0 recover message*/

Update directory entry with information in message;
it (a/l bucket managers have replied)
/*all directory entries have been verified*/
Publicize own named port with name server,
/*Implies this manager now has healthy copy-
and will now serve users’ "request” messages
and recovering directory managers’ “request
copy” messages (accesses gotten through
name server)*/ A
break;

case bucketrecovery: /°from recovering bucket manager/*

Update directory entries, it necessary. to reflect
true state of buckets:
Cache port of bucket manager in iocal name table;

/°*respond to bucket manager break;
who initisted this update */
) case emergency: /*from IPC - notification of pont death*/ )

olse { /° op = delete */ Remove port from cached name table; o
Apply local directory updates; Place an indicator in state of each sssocisted -
RememberAck(meg.ackport, transaction # , myport): transaction that iniialy contacted port has died;
/° save up acks unti) the equivalent of /°doesn’t just abort transaction since another o
exclusive-locking occurs */ bucket manager may now be invoived (wroagbucket protocol) -
} 20 waits until timer for transaction goes off */ L
ReleaseSaved(); break:
/*Hf finishing this directory update enables previously ) . o
delayed ones. make them accessible to GetMessage */ case timeout: break;

)
break: } S
' #f (freadcount) SendRememberedAcks():

/°send acks saved by deletion updates */ ‘f.
cage reinit: /*from OS's process manager that for (afl transactions, 1, whose timers have expired){ —
festarted directory manager process. RestoreState(t);
Note this uses a consenative approach- # (t.portdied) <
doesn't skip bucket managers®/ Send user a failure reply;
olee Retransmit; -
) -

)
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) Figure 11 Pseudocode for Fault Tolerant Bucket Managers

Y, Bucket Manager Froat Ead Process: Bucket Slave Process:
. /*Note that communication between bucket managers involves messageid = receivemessage (dmsg):
1 IPC name lookup- the presentation here generally assumes that /°Includes data needed to initialize local copy of up-list*/
=) a valid port is found*/ if (messageid = = wrongbucket) sw = msg.op;
N ‘ eise sw = messageid:
) while (trve) { switch (sw) {
X = receivemessage (&mag);
Y switch (messageid) { case recover: /*Could try to package information about consecun: €
A case splitbucket: /° from another bucket buckets in one message. but doesn't in this version®/
manager with no available space */ oldpage = Mmeg.page:
A ANocate avallable pege: Selectivelock (oldpage):
putbucket (newpage, meg.haif2); Send “recoversck” 1o msg.replyport;
- /°as written, failure here makes newpage garbage*/ getbuchet (oidpage. current),
- Send "SpitReply” message containing link to new bucket; Construct and send “bucketdata” 10 recovering directory;
- break; onmachine = true;
case cancelspiit: Dealiocate page assigned; while (onmachine) {
* break; newpage = current -> next;
Cale recover: maching = current -) hextmgr.
’. Update up-list; if (machine = = nil) break; ¢
.- Broadcast revival to existing siaves; it (machine '= me) { T

e
[

v

Create siave to handie response; Send "recover” 10 next manager;
Forward message fo it; GetRecoverAck(): /° loops until achieved.

retransmits if umeout. WAITS if destination
known to be down®/

o'
S

-
..

- ca8e emergency message about slave: .
~ Update transaction # - siave table; onmachine = faise; -
break; } g
. case reinit. /*from O.S.’s process manager®/ olse {
/°Get an up-list from a neighboring bucket manager- SelactiveLock (newpage):
- a2 "neighbor” being another bucket manager connected getbucket (newpage. current):
- via ext or prev links from locally managed buckets- UnSeilectivel.ock (oldpage):
. front end process probably should maintain Send “bucketdata”;
= a cache of bucket managers id's - current pon if known®/ okipage = newpage;
g while (true) { )
! Locate port, p. tor ane ol neighboring }
~ bucket managers; UnSelectiveLock (oldpage);
Send “empty” up-iist to initiate up-iist exchange: CiearDuplicates();
o * receivemessage (msg): break;
LN /*with finite timeout*/
- i (messageid = = up-list exchange) bresk; case find: oldpage = mag.page;
~ } ReadLock (oldpage),
for (all directory managers in msg.up-list) it (messageid = = wrongbuckat)
. Send “bucketrecovery™ message: Send “Ack” to bucket manager hokding
-, MergeUp-lists(&up-list. msg.up-list); previous bucket; /*allows it to unlock */
<. Aliocate public port and assert my iong-term name for it; else Send "Buckeldone” message to directory manager,
o H getbucket (oidpage, current).
Case up-list exchange: onmaching s frue:
# (not a reply) Send own up-list in response; /°Follow next links until current is the right bucket:*/
s mrg.up.,m; (8up-hst, meg.u; list); while (current is wrong bucket 88 onmachine) {
for (al! directory managers in msg.up-list - up-Nst) { newpage = curtent -> next.
- Send “bucketrecovery” message: maching = curment -> nextmgr:
. 8roadcast revival to existing alcvu. # (maching ! = me) { /7° next bucket is remote */
- } Send “Wrongbucket ™ messege to next bucket
: break; manager;
cane timeout: onmachine = falge;
Initiste up-Nst exchange with ali heaihy neighbors; )
5 /°don’t worty if valid port can aot be found for one*/ olse { /° next bucket is local */
' break; ReadLock (newpage).
‘ delauit: gotbucket (newpage. current);
- # (ransaction # not yet seen) { UnReadi.ock (oldpage);
o Create a bucket siave process and forward meg (0 it; oidpage = newpage:
) Record transection # - siave mapping: )
.. eloe { /°duplicate message*/ # (onmachine) {
n lookyp transsction # ; # (soarch (current, mag key))/* is key there? */
_ ¥ (sssociated siave still alive) found (mag.key);
Al forward message: /°Sead user response indicating key found®/
. olse Send appropriate reply; olse
O ) ; notfound (meg key);
- } slse GetWrongbucketReply(); /*See below*/

UnResdLock (oldpage):
- ClearDuplicates(): /*See below*/
break;




Figure 11 (continued)

case ingert: onmachine = true;
oldpage = meg.page.
SelectiveLock (oldpage).
if (messageid = = wrongbucket)
Send “Ack” 10 previous bucket manager;
oise Send "bucketdone” message:
getbucket (oldpege, current);
Follow next links until current is the right bucket
(as in find case except use Selective locks instead of
Read locks);
f (lonmachine) {
opiy();

) UnSelectivelLock (oidpage);
olse {
¥ (search (current, mag.key)) {/°is key already there?*/

WCCees = true,;
UnSelectivelock (okipage);

}

olse ¥ (current -> count | = aymentries) {
/° current bucket not full */
success = true;
add (current, mag.key):
/*inserts key into current buffer */
putbucket (oldpage, current);
UnSelectiveLock (oldpage);

)
elae {/°current is full - directory will be affected */
success = split (current, halft, half2, meg. key);
/*distributes the contents of the current bucket into
2 buffers pointed to by halfl and half2:
if room available. inserts key into appropriate half
and returns true: otherwise reurns false */
# (AvailablePages()) {
newpage = affocbuchet ():
maching = myid;
putbucket (newpage, hak2);

)
oloe {/° no available pages locally */
done = faise;
while (not done) {
Send "Splitbucket” message
containing contems of new bucket
10 any manager with space;
while (trve) {
messageid = receivemessage (Ameg).
# (imeout) break;
# (messageid = = splitbucketreply) {
done = true;
break;

}
#l (emergency message about

front end sboul recovery
of one) update up-iist;

}

)
machine = mag.bucketmgr:
NOWDAge = MeQ.Page;

)
haltt ) next = newpege:.
hai! -> nextmgr = machine;
/°as written. faiture prior 10 putbucket
makes newpage garbage that won't get cancelled®/

putbucket (oidpage. halt1);
UnSelectivel ock (oldpage);
BroadcastUpdates(); /*See below*/

)
if (success)
Send user response;

Send "request” message to any directory
manager as it & came from user;

}

ClesarDuplicasss();

break;

case delete: needupdste « falae;

auccens = rue;

Find the right bucket 8s in the beginning of insert
except place Exclusive locks:
# (tonmachine) {

GetWrongbucketRepiy();

, UnExclusivelock (oldpage):
oo {

i (current bucket will not be left “too empty”
as a result of deleting msg.key) {

)
else { /*Merging parwer buckets is called for*/
W (msg.key is in first bucket of the pair) {
newpage = current -) next
machine = current -> nextmgr,
i (machine = me) {
Merge on site;

}

eise {/° panner is remote */
Send “Mergedown " message 1o
partner's bucket manager.

/° Mergedown Reply expected */

while (true) (
messageid = receivemessage (&msg):
it (umeout) {
meg success = false;
break:

) .
¥ (messageid = » MergedownReply) break;
¥ (smergency message sbout partner’s

dbucket manager){

meg.success = false;

break:

)
Deal with possidie duphcamns;
/°as in GetWrongbucketReply*/

)
# (meg.success) {/°OK 1 menge
(ie. localdepths match),
contents of partner in msg */
Construct merged bucket
in current bufter;
Start atomic action with partner;
gutbuckst (oldpage, current);
End atomic action; /*Commit protocol®/
# (aborted) success = falee;
7°if committed. partner will be responsible for
propagating "update”™ memages®/

}
eise (/° simply remove record */
¥ (remove (2. current))
) putbucket (oldpage. current);

) UnExclusivelock (oldpage):
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Figure 11 (continued)

else { /° msg.key in second of pair */
newpage = current -> prev:
machine = current -> prevmgr:
UnExclusiveLock (oldpage).
if (machine = = me) {
Merge on site;

)
olse {/° partner is remote */
Send “Mergeup™ message 10
partner’s bucket manager;
/* MergeUp Reply expected */
while (true) {
; (8msg);

Messageid = receivemessage
# (timeout) Retransmit “Mergeup™ message;

# (messageid = = MergsUpReply) bresk
# (emergency message sbout
pesiner’s bucket manager) {
mag.success = faise;
break;
)
& (emergency message about
death of some directory manager or
message from front end about
recovery of one) update up-list;
Deal with duplicates;

}
# (imag.success) {
/* not mergable - simply remove record */
#f (remove (2, current))
putbucket (oldpage, current).

)
olse {/*° apparently mergable from
panner's point of view- check more locally */
Exclusivelock (oldpage).
getbucket (oldpage. current),
it (hey to be deleted no longer
beiongs in current bucker) {
UnExclusivelock {oidpage);
Send “Goahead” message 10 partner
with success field set 1o faise;
/°cancels merge */
success = false;

}

olne if (current-diocaidepth
does not match localdepth in meg ||
current no longer “too empty™) {

Send “Goahead "™ message
with success = flelse;
/°cancel merge */

)

olee {
Send successful “Goahead”
message 1o partner,

/°uil parther’s manager 10 merpe "/

current -> et = current -> prev;

ourrent -> neXimgr =
cCUrTent -> proVRgr;

current -> commonbitls = deleted;

Start stomic action with pertner;

} 1211

N \-';;f ::-';:-‘

CASS METQeup: Newpage =

if (success)
Send user resonse:
olse
Send “reques!” message to any directory
manager as if it came from user;
#f (needupdate)
BroadcastUpdates();
Exciusivel ock (oidpage):
dealiocate (oldpage):
UnExciugiveLock (oidpage).
)
}
ClearDuplicates():
break;

Ca88 MErgedown: NEWDEQe = Meg.pariner.

e aen{nawpads, Eroter)
(newpage. g
success = brother - localdepth = = mag.localdepth;
Send “MergeDown Reply” to panner,
# (success) {
brother -> commonbits = deleted:
brother -) next = brother -> prev:
brother - nextmgr = brother -> prevmgr.
Start atomic action with partner;
puthucket (newpage. brother).
End atomic action;
# (committed) {
i (newpage).

BroadcastUpdates().
Exclusivelock (newpage),
) dealiocate (newpags).

}
UnExciusivelock (newpage).
break,;

: partner;

getbucket (newpage. m' )

success = (brother -> néxt = = mag target) &8
(brother -> nextmgr = = meg.mansgerid).
Send "MergeUp Reply™:

W (success) {
/7° "GoAhead™ expected */
while (trve) {
messageid = receivememsage (8mag):
€ (timeout) meg.success = false;
# (messageid = = GoAhead) bresk.
# (emergency message sbout partnet’s manager) {
meg.success = faise;
break;

h........n = = MergeUp) /*duplicase®/
Retransmit "MergeUpReply”;

}
¥ tmag.success) { /° merge*/
Conetruct merged buckst in brother:
Start atomic action with pertner;
{ newpage, brother);
End atomic action;

)

)
UnExclusivelock (newpage).
ClearDupiicates():

break;
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Figure 11 (continued)
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o ?'OMCMUDGIW)
' notdone = trye;

« while (notdone) {

- Send “update” messages to all

; directory managers on up-iist;

) while (true) {

N messageid = receivemessage(8 mag);
& # (timeout) breek:

it (messageid = = updateack)

A Mark that manager on up-list;

N it (relevant emergency message)

. update up-list;

" i (recovered directory manager) {

N vpdate up-list;

. ) Send "update” message:

it (messageid = = wrongbucket) /*duplicate®/

. Send “ack*”;

. it (messageid = = request) /*duplicate®/

. /13Send "bucketdone”;

; if (all directory managers accounted for) {

o done = frue;

- ) :
> } /°Ignore irrelevant emerg. msgs*/

. }
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while(true) (
measageid = receivemessage (8msg).
il (tmeout) Retransmit “wrongbucke!” message;
i (messageid = « WrongbucketReply) break;
i (emergency message about next bucket manager) {
send user a failure response;

)

if (messageid = = wrongbucket) /*duplicate*/
Send “ack”;

#f (messageid = = request) /*duplicate*/
/138end "bucketdone”;

)
)

ClearDuplicates()

while (any messages pending) {
= feceivemessage (8msg).

case wrongbucket: Send “ack”;
case request: Send "bucketdone”;
i y: /* only possible in insert®/
#t (from other than chosen partner)
Send “cancelsplit”;

/°Other possible duplicates

(e.g. Mergeup. MergeUpReply)

require no action®/
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4. Conclusions

In this paper, we have presented a solution for distributing an extendible hash file
with replication of the directory component of the structure. The solution is
interesting in its own right for use in a distributed data base system that is expected
to frequently change size and be available from various points in the network.

The solution also serves to illustrate several points that may apply to other
problems that can be viewed primarily as data structures to be partitioned and
possibly replicated across sites of a distributed system. The first point concerns the
features of sequential data structures that make them amenable to distribution. In
this study, we chose a shallow (2-level) linked structure as a starting point. For
comparison, we can consider the deeper structure such as a B-tree or a logically
contiguous one such as linear hashing [Litwin 80). First of all, a multilevel linked
structure offers several advantages. The links map naturally onto a port-based
communication mechanism and the indirection provided by the directory allows
flexibility in assigning buckets to sites. It is especially convenient if the top level
component is reasonably small. In our case this allows the hash function to calculate
a location in the addresss space belonging to a single logical processor. By contrast,
linear hashing lacks the directory component and therefore requires that a naming
convention be adopted to give the appearance of a network-wide address space
appropriate for direct calculation of bucket locations. Of course, if the directory
outgrows a single manager, extendible hashing requires a similar convention.

The major complexity of our solution arises from the replication of the directory
to enhance availability. Although the absence of a directory in the linear hashing
scheme seems at first glance to provide availability easily, there is a small set of data
required for bucket address calculation that should be replicated. In the naive
solution, this information should also be accurate, suggesting a need for strict
synchronization among copies. Thus eliminating the directory component does not
trivialize the problem as some researchers have claimed. The shallowness of our
multilevel structure is an asset in that the short average search path makes an optimal
assignment of buckets to managers relatively unimportant. For a deeper structure
such as a B-tree, one might want to address the hard problem of grouping pages

- within servers to improve locality.

The second point demonstrated by our solution is the value of making
modifications in the implementation of the data structure that allow recovery from
the use of inconsistent information (e.g. next links) and improved locality (e.g. prev
links). There are opportunities for taking this idea even further in the solution
presented.

Another point has to do with methodology. Developing a distributed solution
raises a number of issues; although some are unique to this particular model of
computation, the aspect of achieving a degree of concurrency is common to both
distributed and shared data systems. Thus a correct centralized solution should prove
to be a good starting point in determining how to partition structured data. The
approach successfully used here was to first solve the problem of concurrent access
and then use that result as the basis for distributing the computation.
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Finally, it bears repeating that a fundamental characteristic of a distributed
system is the impracticality of gathering a true instantaneous global view of the
world. Successful distributed applications must be able to accommodate inconsistent
and inaccurate information.
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